Stability and periodicity in dynamic delay equations

نویسندگان

  • Murat Adivar
  • Youssef N. Raffoul
چکیده

Keywords: Delay dynamic equations Fixed point theory Lyapunov Periodic solutions Stability Time scales a b s t r a c t Let T be an arbitrary time scale that is unbounded above. By means of a variation of Lyapunov's method and contraction mapping principle this paper handles asymptotic stability of the zero solution of the completely delayed dynamic equations x ∆ (t) = −a(t)x(δ(t))δ ∆ (t). Moreover, if T is a periodic time scale, then necessary conditions are given for the existence of a unique periodic solution of the above mentioned equation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Periodicity in a System of Differential Equations with Finite Delay

The existence and uniqueness of a periodic solution of the system of differential equations d dt x(t) = A(t)x(t − ) are proved. In particular the Krasnoselskii’s fixed point theorem and the contraction mapping principle are used in the analysis. In addition, the notion of fundamental matrix solution coupled with Floquet theory is also employed.  

متن کامل

Periodicity and Stability in Neutral Nonlinear Dynamic Equations with Functional Delay on a Time Scale

Let T be a periodic time scale. We use a fixed point theorem due to Krasnosel’skĭı to show that the nonlinear neutral dynamic equation with delay x(t) = −a(t)x(t) + (Q(t, x(t), x(t− g(t))))) +G ` t, x(t), x(t− g(t)) ́ , t ∈ T, has a periodic solution. Under a slightly more stringent inequality we show that the periodic solution is unique using the contraction mapping principle. Also, by the aid ...

متن کامل

Hyers-Ulam and Hyers-Ulam-Rassias stability of nonlinear integral equations with delay

In this paper we are going to study the Hyers{Ulam{Rassias typesof stability for nonlinear, nonhomogeneous Volterra integral equations with delayon nite intervals.

متن کامل

Periodicity and Stability in Nonlinear Neutral Dynamic Equations with Infinite Delay on a Time Scale

Let T be a periodic time scale. We use a fixed point theorem due to Krasnoselskii to show that the nonlinear neutral dynamic equation with infinite delay x(t) = −a(t)x(t) + (Q(t, x(t− g(t))))) + ∫ t −∞ D (t, u) f (x(u)) ∆u, t ∈ T, has a periodic solution. Under a slightly more stringent inequality we show that the periodic solution is unique using the contraction mapping principle. Also, by the...

متن کامل

Hyers-Ulam Stability of Non-Linear Volterra Integro-Delay Dynamic System with Fractional Integrable Impulses on Time Scales

This manuscript presents Hyers-Ulam stability and Hyers--Ulam--Rassias stability results of non-linear Volterra integro--delay dynamic system on time scales with fractional integrable impulses. Picard fixed point theorem  is used for obtaining  existence and uniqueness of solutions. By means of   abstract Gr"{o}nwall lemma, Gr"{o}nwall's inequality on time scales, we establish  Hyers-Ulam stabi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computers & Mathematics with Applications

دوره 58  شماره 

صفحات  -

تاریخ انتشار 2009